Abstracts – Browse Results

Search or browse again.

Click on the titles below to expand the information about each abstract.
Viewing 2 results ...

Stockings, W H (2002) The process of construction planning, Unpublished PhD Thesis, , Technische Universiteit Eindhoven (The Netherlands).

Wu, R (2002) Computer -aided dimensional control in building construction, Unpublished PhD Thesis, , Technische Universiteit Eindhoven (The Netherlands).

  • Type: Thesis
  • Keywords: accuracy; failure; personnel; reliability; uncertainty; bridge; building industry; building design; CAD systems; Netherlands; stochastic analysis; case study; construction project; specification; construction method; regulation; architect
  • ISBN/ISSN:
  • URL: https://doi.org/10.6100/IR552895
  • Abstract:
    Dimensional control in the building industry can be defined as the operational techniques and activities that are necessary, during the construction process of a building, for the assurance of the defined dimension quality of a building (Hoof, 1986). Efficient and precise dimensional control of buildings under construction is becoming ever more important because of changes in the construction industry. More prefabricated components are used; more regulations appear; newly designed buildings have more complex shapes, and building construction is speeding up. To ensure the predefined dimensional quality, a plan of dimensional control must be designed, on the basis of building drawings and specifications delivered by architects, before the building is constructed. The dimensional control plan must provide site personnel with adequate information on, among others, setting out and assembling building components, which can often be done by means of Total Stations. The essence of designing a dimensional control plan is to find out which points should be used as positioning points, which points should be set out in advance or controlled afterwards, and not to forget why. In an effort to contribute to the improvement of the dimensional control of on-site construction projects, this research tries to capture the knowledge required to design an adequate dimensional control plan and make that knowledge more generally available, and build a digital connection between CAD systems and Total Stations, focusing on prefabricated concrete building structural elements. The instrument developed in this research for capturing of essential dimensional control information and knowledge makes use of Product Data Technology (PDT) and Knowledge Technology (KT). The chosen solution supports the stochastic analysis of optimal positioning points taking account of various sorts of deviations and their mutual relationships. The resulting information model has been written in a standardized information modelling language called UML (Unified Modelling Language). The model has been implemented in a Dimensional Control-System (DCS) and applied in the “La Tour” construction project in Apeldoorn, the Netherlands. The DCS provides a digital way to bridge the floor plan design with dimensional control, predict dimensional deviation limits and output the data needed for a Total Station. The case study of “La Tour” tests the UML model and prototype of the DCS. The results prove that direct positioning of objects (by putting reflectors on the objects and using a Total Station and by inputting coordinates extracted and calculated from the AutoCAD drawings) provides higher speed, accuracy and reliability. It also shows a way to (pre)position free form objects in 3D where traditional methods cannot. In conclusion: (1) it seems to be justified to expect that the application of the DCS will contribute to increased confidence in dimensional control and the reduction of costs of failure, which potentially could support the increased use of cheaper construction methods, and will also contribute to the improvement of building design and construction process. (2) The scientific contribution of this research is a first step towards providing dimensional quality in a construction process covered by stochastic dimensional uncertainty, even for positioning of free form objects.